skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "I_Czimczik, Claudia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Rapid warming is likely increasing primary production and wildfire occurrence in the Arctic. Projected changes in the abundance and composition of carbonaceous aerosols during the summer are likely to impact atmospheric chemistry and climate, but our understanding of these processes is limited by sparse observations. Here, we characterize carbonaceous aerosol at two field sites, Toolik Field Station in the Interior and the Atmospheric Radiation Measurement facility at Utqiaġvik on the Arctic coast of Alaska, USA, through the summers of 2022 and 2023. We estimated particulate matter ≤2.5 micrometers (PM2.5) and particulate matter ≤10 micrometers (PM10) using laser light scattering (PurpleAir sensors) and examined total carbon (TC) and its organic carbon (OC) and elemental carbon (EC) fractions in total suspended particles (TSP). We also investigated the dominant sources of carbonaceous aerosol using air mass backward-trajectories from the National Oceanic and Atmospheric Administration (NOAA) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and radiocarbon source apportionment of TC. We found TC concentrations were about twice as high in the Interior than on the coast and that modern sources were the dominant sources of carbonaceous aerosol at both Toolik (95–99%) and Utqiaġvik (86–89%), with minor contributions from fossil sources. Periods of significantly elevated PM, TC, OC, and EC concentrations coincided with major boreal forest fire activity in North America that brought smoke to the region. The radiocarbon signature of EC measured at Toolik during these wildfire smoke events indicated that over 90% of the EC originated from modern sources. Our measurements demonstrate changing aerosol concentrations in the Arctic during the summer, and emphasize the need for continuous atmospheric monitoring to evaluate and advance our understanding of this rapidly changing atmospheric environment. (Manuscript in prep) 
    more » « less